Bers slices are Zariski dense

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bers Slices Are Zariski Dense

Each Bers slice is a holomorphically embedded copy of Teichmüller space within XC(S). While it follows that BY can be locally described as the common zero locus of finitely many analytic functions on XC(S), it is known that the Bers slice is not a locally algebraic set [DK]—this is used to show that W. Thurston’s skinning map is not a constant function [DK]. We prove a stronger result about the...

متن کامل

On the Shape of Bers–maskit Slices

We consider complex one-dimensional Bers–Maskit slices through the deformation space of quasifuchsian groups which uniformize a pair of punctured tori. In these slices, the pleating locus on one of the components of the convex hull boundary of the quotient three-manifold has constant rational pleating and constant hyperbolic length. We show that the boundary of such a slice is a Jordan curve wh...

متن کامل

Zariski dense surface subgroups in SL(4,Z)

The result of [6] is the existence of an infinite family of Zariski dense surface subgroups of fixed genus inside SL(3,Z); here we exhibit such subgroups inside SL(4,Z) and symplectic groups. In this setting the power of such a result comes in large part from the conclusion that the groups are Zariski dense the existence of surface groups inside SL(4,Z) can be proved fairly easily, since it’s n...

متن کامل

Zariski dense surface subgroups in SL(3,Z)

The nature of finitely generated infinite index subgroups of SL(3,Z) remains extremely mysterious. It follows from the famous theorem of Tits [12] that free groups abound and, moreover, Zariski dense free groups abound. Less trivially, classical arithmetic considerations (see for example §6.1 of [9]) can be used to construct surface subgroups of SL(3,Z) of every genus ≥ 2. However these are con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Topology

سال: 2009

ISSN: 1753-8416

DOI: 10.1112/jtopol/jtp014